Vanishing point detection in corridor for autonomous mobile robots using monocular low-resolution fisheye vision

Author:

Ni Dejing12,Ji Peng1,Song Aiguo3

Affiliation:

1. School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China

2. The 28th Research Institute of China Electronics Technology Group Corporation, Nanjing, China

3. School of Instrument Science and Engineering, Southeast University, Nanjing, China

Abstract

It is crucial for mobile robots to implement vanishing point detection during navigation in corridors. For the fisheye vision, the conventional methods of vanishing point detection usually obtain poor detection results. This is mainly attributed to serious barrel distortion in images acquired from fisheye cameras that are widely used in mobile robot systems. In the proposed system, a novel vanishing point detection algorithm based on the Gabor filter bank and the convolutional neural network is put forward to realize more accurate detection. The Gabor filter bank is used to extract image texture information in the preprocessing step, thereby enhancing the generalization. The convolutional neural network is used to predict the position of the vanishing point in the fisheye images. To improve the real-time performance and guarantee the accuracy, the low-resolution image should be selected as the input image as far as possible. For this purpose, a multi-resolution experiment was carried out. With the appropriate resolution, the proposed vanishing point detector was found still effective even if 60% of the original information was discarded. In addition, an experiment was conducted to verify the generalization on the condition of illumination changing, pedestrians passing, and different corridor appearance. The experiments displayed good effect and generalization on fisheye images captured in the corridor.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3