Numerical modelling of a passive scalar transport from thermal power plants to air environment

Author:

Issakhov Alibek1ORCID,Baitureyeva Aiymzhan R1

Affiliation:

1. Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract

The number of thermal power plants is growing due to the industry development and the growth of energy consumption. This leads to an increase in harmful emissions in the atmosphere. There is a necessity to control the emission concentration level in the areas of power plants location. The aim of this work was to study the level of pollution concentration at different distances from the source. The mathematical model and the numerical algorithm were verified by solving test problems and comparing them with the experimental data and numerical results of other authors. Furthermore, the pollution distribution in three-dimensional case was investigated in a real physical scale. CO2 was considered as polluting gas. As a real example, the Ekibastuz SDPP-1 coal-fired thermal power plant was simulated. The remarkable feature of this thermal power plant is that the pollution emits from two chimneys of different heights (330 and 300 m). The results showed that due to the difference between chimney heights (30 m), the pollution concentration from the higher chimney dropped far away from source, than from the lower one (2160 and 1970 m, respectively). Obviously, building higher chimneys helps to reduce the harmful impact of emissions on the environment. Also, it can be used to control the emissions level at already existing power plants.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3