Development and validation of an acoustic-electrical joint testing system for hydrate-bearing porous media

Author:

Xing Lanchang1ORCID,Zhu Tai1,Niu Jiale1,Liu Changling23,Wang Bin1

Affiliation:

1. College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China

2. The Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao, China

3. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Abstract

Acoustic and electrical properties are fundamental and important physical properties to characterize hydrate-bearing sediments. A new experimental system called Ultrasound Combined with Electrical Impedance was developed for jointly testing the ultrasonic wave parameters and electrical impedance of hydrate-bearing porous media in the hydrate formation and decomposition processes. The Ultrasound Combined with Electrical Impedance system features its novel ultrasonic-electrical compound sensors and sensor array, fully controllable instruments, variety of sampled data, and flexible working modes. Experiment was carried out with methane gas as the hydrate former, meanwhile the acoustic/electrical parameters were derived. The acoustic/electrical properties were characterized with the aid of typical models such as the time-average equation, Wood’s equation, weighted equation, and Archie’s formula. It has been shown by the results that key parameters such as the sound velocity and electrical impedance can be used to characterize the acoustic and electrical properties of hydrate-bearing sediments conjointly, demonstrating the applicability of the proposed Ultrasound Combined with Electrical Impedance system. The wavelet-analysis based denoising approach and singularity detection method are effective denoising methods to filter the ultrasound signals and to identify the arriving time of the ultrasonic wave. The weighted equation and Archie’s formula with a segmented regression method are recommended for modeling the relations between the hydrate saturation and sound velocity/impedance modulus, respectively.

Funder

Natural Science Foundation of Shandong Province

China Geological Survey Project

National Natural Science Foundation of China

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3