Research on three-dimensional blade designs in an ultra-highly loaded low-speed axial compressor stage: Design and numerical investigations

Author:

Yu Xianjun123,Liu Baojie123

Affiliation:

1. Group 404, School of Energy and Power Engineering, Beihang University, Beijing, China

2. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing, China

3. Collaborative Innovation Center of Advanced Aero-Engine, Beihang University, Beijing, China

Abstract

To realize whether the rules for controlling the blade three-dimensional stacking line in a compressor with conventional loading level could be used for the design of a highly loaded compressor, the effects of three-dimensional bladings in an ultra-highly loaded compressor stage were studied numerically. A low-speed compressor stage (Stage-C) with ultra-high loading coefficient (=0.52) was designed at first. Due to the well-chosen through-flow design parameters accompanied using controlled diffusion airfoil with spikeless leading edge, Stage-C achieved the design goal of loading level with high peak efficiency of about 0.89. However, all the blades in Stage-C were designed with radial stacking lines. And then, Stage-C-three-dimensional was re-designed with non-radial stacking blades based on Stage-C, after which 1-point compressor efficiency profit was achieved. Based on the numerical simulations, the performance change in the two compressors and also the effects of blade three-dimensional stacking were discussed in depth. It was found that the endwall corner separation and secondary flows could be suppressed effectively using endwall bending; however, the blade forward sweep design at the rotor tip failed due to strong rotor–stator coupling effects in the highly loaded compressor stage.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3