Maximally permissive deadlock prevention policies for flexible manufacturing systems using control transition

Author:

Row Ter-Chan1,Pan Yen-Liang23ORCID

Affiliation:

1. Department of Electronic Engineering, Army Academy, Taoyuan, Taiwan

2. Mathematics and Physics Division, General Education Center, Air Force Academy, Kaohsiung, Taiwan

3. Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

Abstract

Nowadays, many kinds of flexible manufacturing systems are used to process many complex manufacturing works due to their machine flexibility and routing flexibility. However, such competition (i.e. robots and machines) for shared resources by concurrent job processes can lead to the problem of a system deadlock. In existing researches, almost experts adopted place-based as controllers to solve the deadlock problems of flexible manufacturing systems whatever the concept of siphons or the reachability graph method are used. Among them, only the reachability graph ones can obtain maximally permissive live states. In this article, the authors try to propose one novel transition-based deadlock prevention concept to solve flexible manufacturing system’s deadlock problem. In addition, two algorithms are developed to support above concept. The experimental results indicate that the proposed policy not only can obtain maximally permissive controllers but also recover all original deadlock markings.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3