A two-phase ranging algorithm for sensor localization in structural health monitoring

Author:

Wan Chunfeng12,Zhao Lei1,Ding Youliang1,Xue Songtao34

Affiliation:

1. Southeast University, Key laboratory of concrete and pre-stressed concrete structure of Ministry of Education, Nanjing, China

2. Mita Laboratory, Department of System Design Engineering, Keio University, Yokohama, Japan

3. Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai, China

4. Department of Architecture, Tohoku Institute of Technology, Sendai, Japan

Abstract

Information about the positions of the sensors in sensor networks is very important, and the deployment of more and more sensors is increasing the need for automatic sensor localization. This article therefore describes a novel two-phase ranging algorithm that first obtains rough estimate of the distance to a sensor’s position using time difference of arrival or time of arrival methods and then obtains a high-resolution estimate based on the rough one using a phase-based ranging scheme. This algorithm can easily resolve the otherwise intractable integer ambiguity that often appears in localization systems, and experimental results show that it can greatly decrease the ranging error in a decentralized distance-based localization system having transmitter beacons and receivers in the nodes. Related problems such as signal filtering and multipath effect are also discussed. This algorithm can make the deployment of large numbers of sensors very simple and the determination of their positions so accurate that it would be feasible to use dense networks of sensors to monitor the structural integrity of large structures.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3