Robust kernel-based model reference adaptive control for unstable aircraft

Author:

Yang Zhao-Xu1,Zhao Guang-She2,Bao Rong-Jing1,Rong Hai-Jun1,Gao Lei-Tao3

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, P.R. China

2. Department of Automation Science and Technology, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, P.R. China

3. Institute of Artificial Intelligence and Robotics, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, P.R. China

Abstract

In this article, a robust kernel-based model reference adaptive control is proposed for an unstable nonlinear aircraft. The heart of the proposed kernel-based model reference adaptive control scheme comprises an offline neural identifier and an online neural controller. In the offline neural identifier, the kernel-based unified extreme learning machine algorithm is used to identify the aircraft model with the available input–output data in a finite time interval. The finite time interval is selected to avoid the response of the unstable aircraft growing unbounded. In the kernel-based unified extreme learning machine, the hidden layer feature mapping is determined by the kernel matrix. However, the unified extreme learning machine is a batch learning algorithm and is not suitable for the online control learning. To solve the problem, a recursive version of the unified extreme learning machine is developed in this study. Based on a given reference model and the identified model, the recursive version of the unified extreme learning machine algorithm is applied to construct the online control law to compensate for the changes in the aircraft dynamics or characteristics. The performance of the proposed kernel-based model reference adaptive control scheme is validated through the simulation studies of a locally nonlinear longitudinal high-performance aircraft. Simulation studies are also compared with a model reference adaptive control based on the back-propagation algorithm and a model reference adaptive control based on the basic extreme learning machine algorithm in terms of the identification and tracking abilities. The results show that the proposed kernel-based model reference adaptive control can achieve better identification and tracking performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3