Computational consistency of the material models and boundary conditions for finite element analyses on cantilever beams

Author:

Lee Wei-chen1,Zhang Chen-hao1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

Abstract

The objective of this research was to investigate the effects of material models, element types, and boundary conditions on the consistency of finite element analysis. Two cantilever beams were used; one made of stainless steel SUS301 3/4H and the other made of polymer polyoxymethylene. The load–deflection curves of the two cantilever beams obtained by experiments were compared to those obtained by finite element analysis, where the material models—including bilinear, trilinear, and multi-linear—were used. Four element types—beam, plane stress, shell, and solid—were also employed with the material models to obtain the simulated load–deflection curves of the cantilever beams. It was found that bilinear material models had the stiffest behavior due to their overestimated yield strength. In addition, by applying a finite displacement to simulate the grip of the cantilever beams, the discrepancy between the simulated permanent set and the experimental set could be reduced from 80% to 5%. To sum up, both the selection of the material model and the setup of the boundary conditions are critical for obtaining good agreement between the finite element analysis results and the experimental data.

Funder

Ministry of Science and Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3