Thermo-fluid-coupled analysis and simulation of calorimeter of Experimental Advanced Superconducting Tokamak neutral beam injection system on the thermal inertia principle

Author:

Tao Ling1,Hu Chundong1,Xie Yuanlai1

Affiliation:

1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

Abstract

An efficient and accurate thermo-fluid-coupled analysis is the basis of structure design and optimization for high-heat-flux components in neutral beam injection system of Experimental Advanced Superconducting Tokamak and has an important significance of exploring the optimal structure of components and realizing the temperature control of components at a high-parameter steady-state condition. In this article, take the calorimeter in the Experimental Advanced Superconducting Tokamak–neutral beam injection system on the thermal inertia principle, for example, an accurate numerical solution method of thermo-fluid-coupled analysis based on the turbulent heat transfer is established and combined with the near-wall function model, and the working characteristics of three-dimensional calorimeter plate under different deposited beam powers are simulated and analyzed. The temperature distribution of solid structure and corresponding flow field under given cooling condition is calculated. The results obtained by the proposed method coincide well with experimental results, which validate this method. This study provides a potentially useful method for thermo-fluid-coupled analysis and structural design of other high-heat-flux components in the Experimental Advanced Superconducting Tokamak–neutral beam injection system.

Funder

Foundation of ASIPP

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3