Research on plastic deformation law and forming technology of rotary forging with multi-cone rolls

Author:

Wang Qi12ORCID,Zhu Chun-dong123,Liu Xin1,Ma Rong-fei1

Affiliation:

1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China

2. Hubei Center for Quality Inspection of Special Purpose Vehicles, Suizhou, China

3. Suizhou-WUT Industry Research Institute, Suizhou, China

Abstract

With the development of industrial technology, the application of large diameter-thickness ratio integral discs in various high precision vessels is becoming more and more important. At present, the forming processes of large-diameter disc mainly includes welding and multiple local upsetting, but these processes exhibit large defects and cannot meet the requirements of industry. Therefore, a new metal plastic forming technology, namely rotary forging with multi-cone rolls (MCRs) is proposed to integrally form large diameter and ultra-thin discs. The forming process was simulated by DEFORM-3D finite element analysis software, and the deformation characteristics of MCRs disc were revealed. The results show that the axial plastic deformation of disc can be divided into three stages. In the first stage, the plastic deformation area was basically symmetrical, and the deformation was relatively stable. In the second stage, the plastic deformation area on both sides was different, which was in the unstable stage and easy to produce defects. In the third stage, the plastic deformation area was approximately symmetrical for a long time, and the plastic deformation was stable. At the same time, the influence of process parameters on the form characteristics of MCRs, the main defects in the deformation process and the preventive measures were studied. The research results are helpful to better understand the metal plastic forming technology of MCRs and promote the further development of MCRs.

Funder

National Natural Science Foundation of China

Suizhou-WUT Industry Research Institute

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3