Nonlinear vibrations of large structures with uncertain parameters

Author:

Lamrhari Mohammed1,Sarsri Driss2,Azrar Lahcen3,Rahmoune Miloud1,Sbai Khalid1

Affiliation:

1. Laboratoire d’Etudes des Matériaux Avancés et Applications, FS–EST, Moulay Ismail University, Meknes, Morocco

2. Laboratoire des Technologies Innovantes, ENSA, Abdelmalek Essaadi University, Tétouan, Morocco

3. Department of Applied Mathematics & Info, ENSET, Mohammed V University, Rabat, Morocco

Abstract

The effects of uncertainties on the nonlinear dynamics of complex structures remain poorly mastered and most methods deal with the linear case. This article deals with a model of a large and complex structure with uncertain parameters for the nonlinear dynamic case, and the reduction in the model discretized by the finite element method is obtained by reducing the degrees of freedom in the numerical model. This is achieved by the development of the unknown displacement vector on the basis of the eigenmodes; a particular attention is paid to the calculation of the nonlinear stiffness coefficients of the model. The method combines the stochastic finite element methods with a modal reduction class based on sub-structuring the component mode synthesis method. The reference method is the Monte Carlo simulation which consists in making several simulations for different values of the uncertain parameters. The simulation of complex and nonlinear structures is costly in terms of memory and computation time. To solve this problem, the perturbation method combined with the component mode synthesis reduction method significantly reduces the computational cost by preserving the physical content of the original structure. The numerical integration by the Newmark schema is used; the first statistical moments (mean and variance) of the nonlinear dynamic response are computed. Numerical simulations illustrate the accuracy and effectiveness of the proposed methodology.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3