A new model based on belief rule base and membership function (BRB-MF) for health state prediction in sensor

Author:

Yin Xiaojing1ORCID,Shi Guangxu1,Peng Shouxin1,Zhang Bangcheng1,Guo Huachao2

Affiliation:

1. Mechanical and Electrical Engineering, Changchun University of Technology, Changchun, China

2. Department of Automotive Engineering, Shandong Transport Vocational College, Weifang, China

Abstract

Health state prediction is an effective way to improve the reliability for sensors. In the process of sensor degradation, it is difficult to obtain more effective monitoring data. And in the classification of health states, how to identify the adjacent state is also a problem. This paper proposed a health state prediction model based on belief rule base (BRB) and membership function (MF), which is called BRB-MF. In the model, BRB can make full use of expert knowledge and poor effective data. In the prediction results of BRB, it may be not completely logical or not entirely appropriate facing adjacent states of sensor. In order to solve the problem, MF is used to continue the analysis of the predicted results of BRB. In the BRB-MF model, the covariance matrix adaptation evolutionary strategies (CMA-ES) optimization algorithm is used to update the model parameters to make up for the uncertainty of expert knowledge. In the end, the brightness sensor of the rail vehicle LED lighting system is taken as a case study. The results show that the BRB-MF model can predict the health state of sensor with a high accuracy and a reasonable state.

Funder

Project of the Science and Technology Department of Jilin Province of China

Project of the Science and Technology Department of Jilin Province of Chnaina

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3