Evaluation of minimum quantity lubrication and minimum quantity cooling lubrication performance in hard drilling of Hardox 500 steel using Al2O3 nanofluid

Author:

Duc Tran Minh1,Long Tran The1ORCID,Van Thanh Dang2

Affiliation:

1. Department of Manufacturing Engineering, Faculty of Mechanical Engineering, Thai Nguyen University of Technology, Thai Nguyen, Vietnam

2. Faculty of Basic Sciences, College of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam

Abstract

The work in this study presents an experimental evaluation on minimum quantity cooling lubrication based on the Ranque–Hilsch vortex tube and minimum quantity lubrication performance in hard drilling of Hardox 500 steel (49–50 HRC) using coated carbide drills. Al2O3 nanoparticles are suspended in the based fluids including water-based emulsion and rice bran oil to enhance the cooling and lubricating effects. The response variables, consisting of drilling thrust force, surface roughness, surface profile and microstructure, and tool wear, are studied, and the analysis of variance is used for evaluating the input machining parameters under minimum quantity lubrication and minimum quantity cooling lubrication conditions. The results of this article indicate that minimum quantity cooling lubrication using Al2O3 nanofluid provides the better machining performance and gives out better surface quality and lower thrust force compared to minimum quantity lubrication with/without nanofluid and minimum quantity cooling lubrication with pure fluid. Also, based on the optimization results, the validation experiments are conducted to study more on drilling thrust force, chip morphology, and tool wear.

Funder

Thai Nguyen University

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3