The feasibility of external gas-assisted mold-temperature control for thin-wall injection molding

Author:

Minh Pham Son1ORCID,Do Thanh Trung1,Uyen Tran Minh The1

Affiliation:

1. HCMC University of Technology and Education, Ho Chi Minh City, Vietnam

Abstract

Simulation and experimental testing were conducted on an external gas-assisted mold-temperature control combined with a pulsed cooling system used for thin-wall injection molding to determine its effect on the heating rate and temperature distribution of a mold surface. For mold heating via external gas-assisted mold-temperature control, a hot gas was directly discharged on the cavity surface. Based on the heat convection between the hot gas and the cavity surface, the cavity temperature rose to the target value. Practically, the gap between the heating surface and the gas gate is an important parameter as it strongly influences the heating process. Therefore, this parameter was analyzed under different values of plate-insert thickness herein. Heating was elucidated by the temperature distribution and heating-rate data detected by the infrared camera and sensors. Then, external gas-assisted mold-temperature control was applied for the thin-wall injection-molding part of 0.5 mm thickness with the local-gate-temperature control. The results show that with 300°C gas temperature, the heating rate could reach 9°C/s with a 0.5-mm stamp thickness and a 4-mm gas gap. The results show that with local heating at the melt-entrance area of the mold plate, the cavity was filled with a 20-s heating cycle.

Funder

Ministry of Education and Training, Vietnam

HCMC University of Technology and Education, Hochiminh City, Vietnam

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3