A multidisciplinary coupling relationship coordination algorithm using the hierarchical control methods of complex systems and its application in multidisciplinary design optimization

Author:

Yuan Rong12,Li Haiqing3

Affiliation:

1. School of Mechanical Engineering, Chengdu University, Chengdu, China

2. College of Architecture and Environment, Sichuan University, Chengdu, China

3. School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, China

Abstract

Because of the increasing complexity in engineering systems, multidisciplinary design optimization has attracted increasing attention. High computational expense and organizational complexity are two main challenges of multidisciplinary design optimization. To address these challenges, the hierarchical control method of complex systems is developed in this study. Hierarchical control method is a powerful way which has been utilized widely in the control and coordination of large-scale complex systems. Here, a hierarchical control method–based coupling relationship coordination algorithm is proposed to solve multidisciplinary design optimization problems. Coupling relationship coordination algorithm decouples the involved disciplines of a complex system and then optimizes each discipline objective at sub-system level. Coupling relationship coordination algorithm can maintain the consistency of interaction information (or in other words, sharing design variables and coupling design variables) in different disciplines by introducing control parameters. The control parameters are assigned by the coordinator at system level. A mechanical structure multidisciplinary design optimization problem is solved to illustrate the details of the proposed approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3