An effective multivariate control chart for detecting small mean shifts using support vector data description

Author:

Xia Beixin1,Jian Zheng2,Liu Lei3,Li Long2

Affiliation:

1. School of Management, Shanghai University, Shanghai, China

2. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

3. Apple Inc., Cupertino, CA, USA

Abstract

Conventional multivariate cumulative sum control charts are more sensitive to small shifts than [Formula: see text] control charts, but they cannot get the knowledge of manufacturing process through the learning of in-control data due to the characteristics of their own structures. To address this issue, a modified multivariate cumulative sum control chart based on support vector data description for multivariate statistical process control is proposed in this article, which is named [Formula: see text] control chart. The proposed control chart will have both advantages of the multivariate cumulative sum control charts and the support vector data description algorithm, namely, high sensitivities to small shifts and learning abilities. The recommended values of some key parameters are also given for a better application. Based on these, a bivariate simulation experiment is conducted to evaluate the performance of the [Formula: see text] control chart. A real industrial case illustrates the application of the proposed control chart. The results also show that the [Formula: see text] control chart is more sensitive to small shifts than other traditional control charts (e.g. [Formula: see text] and multivariate cumulative sum) and a D control chart based on support vector data description.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3