A lifetime optimization method of new energy storage module based on new artificial fish swarm algorithm

Author:

Zhi Pengfei1,Qi Yongshuang1ORCID,Wang Weiran1,Qiu Haiyang1,Zhu Wanlu1,Yang Ye1

Affiliation:

1. Jiangsu University of Science and Technology, Zhenjiang, China

Abstract

The demand for new energy will continue to expand as the environment changes and fossil energy decreases. However, the instability of new energy has slowed down the development of new energy. The joint use of new energy and energy storage modules effectively solves the shortcomings of new energy. The article proposed a lifetime optimization method of new energy storage module based on new artificial fish swarm algorithm. Firstly the life model based on the battery capacity [Formula: see text], charging current [Formula: see text], and discharge current [Formula: see text] is built. Secondly, the deep learning method is used to improve the step length and speed change of artificial fish-school algorithm. Finally, the simulation platform detects the optimized parameters [Formula: see text]. The simulation results show that optimized parameters can help extend the life of the energy storage module.

Funder

Jiangsu Postgraduate Practice Innovation Program

National Natural Science Foundations of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3