Meshing principle and transmission analysis of a beveloid non-circular gear

Author:

Han Jiang1,Li Dazhu1ORCID,Tian Xiaoqing1,Xia Lian1

Affiliation:

1. CIMS Institute, Hefei University of Technology, Hefei, P.R. China

Abstract

To improve the stability and accuracy of non-circular gear transmission, a beveloid non-circular gear transmission scheme was developed to reduce the meshing impact and achieve backlash adjustment. When using the beveloid rack as the medium, the instantaneous contact line of the beveloid non-circular gear pair was shown to be a straight line, and the tooth surface was shown to be a ruled surface based on the transmission relationship between the rack centerline and the non-circular pitch curve. The zero-modification method was employed to develop the beveloid non-circular gear. Further, the generation method for the tooth profile of the modified non-circular gear was reviewed, and a digital solid model was developed for the beveloid non-circular gear. The physical contact simulation method was used to analyze the meshing backlash, and the influence of the axial displacement adjustment on the meshing backlash of the gear pair was obtained. By considering a pair of beveloid elliptic gears as an example, machining and transmission experiments were conducted, with results showing smooth gear-pair meshing and the anticipated backlash adjustment effect.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the calculation and evaluation method of transmission efficiency of noncircular planetary gear;Measurement Science and Technology;2024-04-18

2. Research on Nonlinear Vibration Characteristics of Internal Beveloid Gear Transmission System;Applied Sciences;2023-11-17

3. Design and extraction of tooth profile of denatured elliptical gear;Advances in Mechanical Engineering;2022-12

4. Experimental Research on Transmission Characteristics of Elliptic Gear Transmission Systems;Strojniški vestnik - Journal of Mechanical Engineering;2022-11-29

5. Mathematical design and meshing analysis of a new internal gear transmission based on spatial involute-helix curve;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3