Simulation and experimental validation of powertrain mounting bracket design obtained from multi-objective topology optimization

Author:

Zhao Qinghai1,Chen Xiaokai1,Wang Lu1,Zhu Jianfeng2,Ma Zheng-Dong3,Lin Yi4

Affiliation:

1. Collaborative Innovation Center of Electric Vehicles in Beijing, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. Pan Asia Technical Automotive Center Co., Ltd., Shanghai, China

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

4. Beijing Automotive Technology Center, Beijing, China

Abstract

A framework of multi-objective topology optimization for vehicle powertrain mounting bracket design with consideration of multiple static and dynamic loading conditions is developed in this article. Incorporating into the simplified isotropic material with penalization model, compromise programming method is employed to describe the multi-objective and multi-stiffness topology optimization under static loading conditions, whereas mean eigenvalue formulation is proposed to analyze vibration optimization. To yield well-behaved optimal topologies, minimum member size and draw constraint are settled for meeting manufacturing feasibility requirements. The ultimate mounting bracket is reconstructed based on the optimum results. Numerical analyses of the bracket are performed, followed by physical tests. It is proven that topology optimization methodology is promising and effective for vehicle component design.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3