Slewing valve based on bypass pressure-compensation principle for dynamic control of large inertia load

Author:

Xie Haibo1,Zhu Wu1,Lv Jiujiu1,Hu Liang1ORCID,Yang Huayong1

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou, China

Abstract

Typical slewing valve is a three-position six-way proportional valve based on bypass throttle principle, whose output flow rate and opening dead zone of the main valve port are both affected by the load. Thus, it has poor performances in dynamic control of varying loads. This article presents a novel slewing valve based on bypass pressure-compensation principle, which has much better performance in dynamic control of varying loads and even for large inertia loads. A pressure-compensated valve is added to connect the out ports of the main valve port and the bypass port to keep the pressure differences at the main valve port and the bypass port in same. As a result, the flow distribution ratio of these two ports keeps stable for a certain spool position, which can avoid the output flow rate fluctuation despite the varying loads. In addition, the opening dead zone of the main valve port is very small and keeps almost unchanged. These advantages make the proposed valve to control large inertia load with great stability. In the article, a mathematical model formulating the dynamic performance of the valve is further established to provide guide for the optimization of the parameters, including the shapes and orifice areas of the main valve port and bypass port, the stiffness of the spring controlling spool motion, and so on. A prototype valve was manufactured based on the presented method. A series of tests on experiment bench and real crane validate its great performances on flow rate and dead zone stabilities as well as fast dynamic response.

Funder

National Natural Science Foundation of China

Major State Basic Research Development Program of China

Science Fund for Creative Research Groups of National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3