Dynamic parameters identification for sliding joints of surface grinder based on deep neural network modeling

Author:

Zhang Wei12,Liu Xurong1,Huang Zhiwen1,Zhu Jianmin1ORCID

Affiliation:

1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China

2. Public Experiment Center, University of Shanghai for Science and Technology, Shanghai, China

Abstract

Dynamic parameters of joints are indispensable factors affecting performance of machine tools. In order to obtain the stiffness and damping of sliding joints between the working platform and the machine tool body of the surface grinder, a new method of dynamic parameters identification is proposed that based on deep neural network (DNN) modeling. Firstly, the DNN model of dynamic parameters for working platform-machine tool body sliding joints is established by taking the stiffness and damping parameters as the input and the natural frequencies as the output. Secondly, the number of hidden layers in DNN topology is optimally selected in order to the optimal training results. Thirdly, combining the predicted results by DNN model with experimental results by modal test, the stiffness and damping are identified via cuckoo search algorithm. Finally, the relative error between the predicted and experimental results is less than 2.2%, which achieves extremely high prediction precision; and thereby indicates the feasibility and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3