Wall thinning behaviors of high strength 0Cr21Ni6Mn9N tube in numerical control bending considering variation of elastic modulus

Author:

Fang Jun12ORCID,Ouyang Fang2,Lu Shiqiang2,Wang Kelu2,Min Xuguang1,Xiao Botao1

Affiliation:

1. School of Materials and Mechatronics, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, China

2. National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang, Jiangxi, China

Abstract

Wall thinning, as one of the key defects in tube bending determined the forming quality and limit, is more easily to occur due to the specific properties of high strength 0Cr21Ni6Mn9N stainless steel tube (0Cr21Ni6Mn9N-HS tube). To achieve tube accuracy numerical control (NC) bending forming, the wall thinning characteristics of the 0Cr21Ni6Mn9N-HS tube should be clarified. An analytical model was proposed to reveal the essential relation between tube parameters and wall thickness distribution. Considering the varied elastic modulus, a finite element (FE) model was applied to explore the wall thinning under different geometrical and process parameters. Using the modified multi-parameter sensitivity analysis method combined with FE simulation, the sensitivity of the wall thinning to geometrical and process parameters was carried out. The experiments of NC tube bending were conducted to validate the analytical and simulate results. The results show that the varied elastic modulus can enhance the wall thinning degree, but has no obvious effect on wall thinning characteristics. The wall thinning characteristics under different geometrical and process parameters are revealed and the reasonable parameters ranges for the 0Cr21Ni6Mn9N-HS tube in NC bending are obtained. The most sensitive parameter on wall thinning is the relative bending radius, while the bending angle is the least one.

Funder

Natural Science Foundation of Jiangxi Province

Education Department of Jiangxi Province

national key defense laboratory of computational physics

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3