Digital fuzzy sliding-mode control for a linear parameter-varying air–fuel ratio system

Author:

Wu Hsiu-Ming1ORCID,Tafreshi Reza2

Affiliation:

1. Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan, ROC

2. Mechanical Engineering Program, Texas A&M University at Qatar, Doha, Qatar

Abstract

Air–fuel ratio is a key factor for the minimization of the harmful pollutant emissions and maximization of fuel economy. However, a big challenge for air–fuel ratio control is a large time-varying delay existing in spark ignition engines. In this article, a digital fuzzy sliding-mode controller is proposed to control a linear parameter-varying sampled-data air–fuel ratio system. First, the Pade first-order technique is utilized to approximate the time-varying delay. The resultant system—a linear parameter-varying continuous-time air–fuel ratio system with unstable internal dynamics—is then discretized to a linear parameter-varying sampled-data air–fuel ratio system appropriate for a discrete-time control approach. Based on the linear parameter-varying sampled-data air–fuel ratio system, a stable sliding surface with a desired tracking error dynamics is presented. Two input scaling factors and one output scaling factor are determined for the proposed digital fuzzy sliding-mode controller. Then, the fuzzy inference is executed through a look-up table to stabilize the sliding surface into a convex set, and then make the tracking error possess uniformly ultimately bounded performance. The overall system stability is verified by Lyapunov’s stability criteria. Finally, the simulation results demonstrate the feasibility, effectiveness, and robustness of the proposed control scheme under different operating conditions and show the superiority of the proposed approach performance compared to the baseline controller.

Funder

Qatar National Research Fund

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3