Fail-safe design and analysis for the guide vane of a hydro turbine

Author:

Budiman Bentang Arief1,Suharto Djoko1,Djodikusumo Indra1,Aziz Muhammad2,Juangsa Firman Bagja3

Affiliation:

1. Department of Mechanical Engineering, Institut Teknologi Bandung, Bandung, Indonesia

2. Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan

3. Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Tokyo, Japan

Abstract

A design for the fail-safe mechanism of a guide vane in a Francis-type hydro turbine is proposed and analyzed. The mechanism that is based on a shear pin as a sacrificial component was designed to remain simple. Unlike the requirements of conventional designs, a shear pin must be able to withstand static and dynamic loads but must fail under a certain overload that could damage a guide vane. An accurate load determination and selection of the shear pin material were demonstrated. The static load for various opening angles of the guide vane were calculated using the computational fluid dynamics Fluent and finite element method Ansys programs. Furthermore, simulations for overload and dynamic load due to the waterhammer phenomenon were also conducted. The results of load calculations were used to select an appropriate shear pin material. Quasi-static shear tests were performed for two shear pins of aluminum alloy Al2024 subjected to different aging treatments (i.e. artificial and natural aging). The test results indicated that the Al2024 treated by natural aging is an appropriate material for a shear pin designed to function as a fail-safe mechanism for the guide vanes of a Francis-type hydro turbine.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameter based tool for Francis turbine guide vanes design using coupled MATLAB - ANSYS approach;Journal of Sustainable Development of Energy, Water and Environment Systems;2021-09

2. An Imitation medical diagnosis method of hydro-turbine generating unit based on Bayesian network;Transactions of the Institute of Measurement and Control;2019-02-10

3. Application of CFD in Indonesian Research: A review;Journal of Physics: Conference Series;2018-04

4. Measurement of pressure wave speed in stainless-steel pipe generated by water hammer;MATEC Web of Conferences;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3