Effect of internal leakage on torque converter characteristics

Author:

Pan Xiong12ORCID,Xinyuan Chen12,Hongjun Sun3,Jiping Zhong3,Chenping Zhen3

Affiliation:

1. Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and Technology, Ministry of Education, Wuhan, Hubei, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, China

3. Bengbu Hydraulic Machinery Co.,Ltd., Bengbu, Anhui, China

Abstract

To understand the effect of internal leakage on the torque field and characteristics of a torque converter (TC), a transient analysis was performed on the internal flow of a TC and the pressure pulsation characteristics of monitoring points in the convection channel. It was found that dividing the leakage area of the TC into a separate watershed improved simulation accuracy by 4%. When there was a leakage area, there were distinct collision, mixing, and assimilation stages between the leakage flow and the main flow. These phenomena caused energy loss that was highest at low speed ratios. However, the leakage flow always accounted for 12% of the main flow regardless of the speed ratio. At the same time, the leakage flow had a larger influence on pressure pulsation inside the TC and especially the low frequency band was more substantial. This shows that the leakage area has a large influence on the TC performance, energy loss, and flow state. Analysis of the leakage area showed that reducing the leakage area helps to improve powertrain performance and fuel economy.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3