Affiliation:
1. Key Laboratory for Road Construction Technology & Equipment, Chang’an University, Xi’an, China
Abstract
It is difficult to have enough samples to implement the full-scale life test on the loader drive axle due to high cost. But the extreme small sample size can hardly meet the statistical requirements of the traditional reliability analysis methods. In this work, the method of combining virtual sample expanding with Bootstrap is proposed to evaluate the fatigue reliability of the loader drive axle with extreme small sample. First, the sample size is expanded by virtual augmentation method to meet the requirement of Bootstrap method. Then, a modified Bootstrap method is used to evaluate the fatigue reliability of the expanded sample. Finally, the feasibility and reliability of the method are verified by comparing the results with the semi-empirical estimation method. Moreover, from the practical perspective, the promising result from this study indicates that the proposed method is more efficient than the semi-empirical method. The proposed method provides a new way for the reliability evaluation of costly and complex structures.
Funder
ministry of science and technology of the people’s republic of china
Shaanxi science and Technology Office
Provincial Natural Science Foundation of Shaanxi
National Sci-Tech Support Plan of China
national natural science foundation of china
Fundamental Research Funds for the Central Universities
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献