A prognostics approach based on the evolution of damage precursors using dynamic Bayesian networks

Author:

Rabiei Elaheh1,Droguett Enrique Lopez12,Modarres Mohammad1

Affiliation:

1. Center for Risk and Reliability, Department of Mechanical Engineering, University of Maryland, College Park, MD, USA

2. Department of Mechanical Engineering, University of Chile, Santiago, Chile

Abstract

During the lifetime of a component, microstructural changes emerge at its material level and evolve through time. Classical empirical degradation models (e.g. Paris Law in fatigue crack growth) are usually established based on monitoring and estimating well-known direct damage indicators such as crack size. However, by the time the usual inspection techniques efficiently identify such damage indicators, most of the life of the component would have been expended, and usually it would be too late to save the component. Therefore, it is important to detect damage at the earliest possible time. This article presents a new structural health monitoring and damage prognostics framework based on evolution of damage precursors representing the indirect damage indicators, when conventional direct damage indicator, such as a crack, is unobservable, inaccessible, or difficult to measure. Dynamic Bayesian network is employed to represent all the related variables as well as their causal or correlation relationships. Since the degradation model based on damage precursor evolution is not fully recognized, the methodology needs to be capable of online-learning the degradation process as well as estimating the damage state. Therefore, the joint particle filtering technique is implemented as an inference method inside the dynamic Bayesian network to assess both model parameters and damage states simultaneously. The proposed framework allows the integration of any related sources of information in order to reduce the inherent uncertainties. Incorporating different types of evidences in dynamic Bayesian network entails advance techniques to identify and formulate the possible interaction between potentially nonhomogenous variables. This article uses the support vector regression in order to define generally unknown nonparametric and nonlinear correlation between the input variables. The methodology is successfully applied to damage estimation and prediction of crack initiation in a metallic alloy under fatigue. The proposed framework is intended to be general and comprehensive so that it can be implemented in different applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3