Variable thickness flow over a rotating disk under the influence of variable magnetic field: An application to parametric continuation method

Author:

Shuaib Muhammad1ORCID,Shah Rehan Ali2ORCID,Bilal Muhammad1

Affiliation:

1. Department of Mathematics, City University of Science & Information Technology, Peshawar, Pakistan

2. Department of Basic Sciences and Islamiat, University of Engineering and Technology, Peshawar, Pakistan

Abstract

The present work explores the behavior of three-dimensional incompressible viscous fluid flow and heat transfer over the surface of a non-flat stretchable rotating disk. A variable thickness fluid is subjected under the influence of an external variable magnetic field and heat transfer. Navier–Stokes equation is coupled with Maxwell equations to examine the hydrothermal properties of fluid. The basic governing equations of motion are diminished to a system of nonlinear ordinary differential equations using appropriate similarity framework, which are further treated with numerical scheme known as parametric continuation method. The parametric continuation method has combined interesting characteristics of both shooting and implicit finite difference methods. For validity of the present numerical scheme, a comparison with the published work is performed and it is found that the results are in excellent agreement with each other. Numerical and graphical results for the velocity, temperature, and magnetic strength profiles as well as skin fractions and Nusselt number are presented and discussed in detail for various physical parameters. The heat transfer process is reduced with positive increment of no-flatness parameter [Formula: see text], while Prandtl number increases the heat transfer rate at the surface of the disk.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3