A lightweight shoulder prosthesis with antagonistic impact-absorbing hybrid actuation for bimanual activities of daily living

Author:

Sekine Masashi1,Shiota Kouki2,Kita Kahori1,Namiki Akio3,Yu Wenwei1

Affiliation:

1. Center for Frontier Medical Engineering, Chiba University, Chiba, Japan

2. Faculty of Engineering, Chiba University, Chiba, Japan

3. Graduate School of Engineering, Chiba University, Chiba, Japan

Abstract

In developing a shoulder prosthesis, in addition to appropriate payload and range of motion under the constraints of weight and shape, impact absorption is very important for safe use. Hybridization of two different actuators (pneumatic elastic actuators with the features of lightness and intrinsic visco-elasticity, and servo motors that have stable torque and a large range of motion in combination with an antagonistic mechanism) was employed to achieve the development of the shoulder prosthesis. A two-link, two-degree-of-freedom arm was used to test the different hybridization configurations in order to investigate the impact absorption. A dynamic simulation platform based on four bimanual activities of daily living was established to obtain the required range of motion and torque for joints of a two-link, four-degree-of-freedom arm. The number of pneumatic elastic actuators required and the dimension of the antagonistic mechanism mechanical structures were optimized using the dynamic simulation platform. The best configuration of the two types of actuators was determined using the dynamic simulation based on the impact absorption results and other criteria. Moreover, a simplified prototype driven by hybrid actuation was made. It was shown that the pneumatic elastic actuator joint could improve impact absorption, and the actuator configuration of shoulder prostheses is activity of daily living dependent. The prototype could reproduce a certain activity of daily living motion, indicating its feasibility in daily living.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3