Optimizing radio frequency identification network planning through ring probabilistic logic neurons

Author:

Azizi Aydin12,Vatankhah Barenji Ali1,Hashmipour Majid1

Affiliation:

1. Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, Turkey

2. Department of Engineering, German University of Technology in Oman, Muscat, Oman

Abstract

Radio frequency identification is a developing technology that has recently been adopted in industrial applications for identification and tracking operations. The radio frequency identification network planning problem deals with many criteria like number and positions of the deployed antennas in the networks, transmitted power of antennas, and coverage of network. All these criteria must satisfy a set of objectives, such as load balance, economic efficiency, and interference, in order to obtain accurate and reliable network planning. Achieving the best solution for radio frequency identification network planning has been an area of great interest for many scientists. This article introduces the Ring Probabilistic Logic Neuron as a time-efficient and accurate algorithm to deal with the radio frequency identification network planning problem. To achieve the best results, redundant antenna elimination algorithm is used in addition to the proposed optimization techniques. The aim of proposed algorithm is to solve the radio frequency identification network planning problem and to design a cost-effective radio frequency identification network by minimizing the number of embedded radio frequency identification antennas in the network, minimizing collision of antennas, and maximizing coverage area of the objects. The proposed solution is compared with the evolutionary algorithms, namely genetic algorithm and particle swarm optimization. The simulation results show that the Ring Probabilistic Logic Neuron algorithm obtains a far more superior solution for radio frequency identification network planning problem when compared to genetic algorithm and particle swarm optimization.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3