Application of the Taguchi method for finite element analysis of a shear-type magnetorheological fluid damper

Author:

Chen Dyi-Cheng1ORCID,Chen Li-Ren1

Affiliation:

1. Department of Industrial Education and Technology, National Changhua University of Education, Changhua, Taiwan

Abstract

A magnetorheological fluid damper is a device in which a magnetorheological fluid is filled in a damper. In this device, the magnetic field is controlled by an external current (voltage) so that the magnetic force of a piston inside the damper changes like an electromagnet. The damping force of the damper is controlled by changing the magnetic force of the piston. With the increasing magnetic force of the piston, the viscosity of the magnetorheological fluid in the damper increases. The primary aim of this study was to maximize the magnetic flux density and identify the following influencing factors from the relevant literature: piston and outer tube materials, piston length, piston diameter, cylinder wall thickness, damper channel clearance, gap channel length, current, and magnetorheological fluid. A magnetic circuit analysis was performed using ANSYS Maxwell, and the optimal parameter combination was identified using the Taguchi method. The analysis of variance was used to examine the influence of various factors on quality characteristics. This study helps understand the relation between structure size, material, and magnetic flux density and contributes to future generations of magnetorheological fluid damper design analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3