Modelling and analysis of system robustness for mechanical product based on axiomatic design and fuzzy clustering algorithm

Author:

Cheng Xianfu1,Zhang Shengcai1,Wang Tao1

Affiliation:

1. School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang, China

Abstract

Robust performance is the most important concern in the design of any product, especially in system design stage that precedes parameter design, because it actually determines the attainable level of product robustness in the parameter design phase. In this article, a framework of modelling and analysis of system robustness is proposed, which includes system modelling, cluster analysis and design of experiments. In the process of system modelling, the metamodel of general design theory was utilized to describe the function–structure model of product design, and the customer needs are transformed into functional requirements. Based on the independent axiom and zigzag mapping mode of axiomatic design, the functional requirements are mapping to design parameters, and the design matrix is created, which is then converted into design structure matrix by identifying the relationship between functional requirements and the sensitivity of functional requirements to design parameters. The fuzzy clustering algorithm is utilized to cluster the design parameters and to group the system components into modules in design structure matrix, and the interface among modules can be identified and system robustness incidence matrix is developed. Then the incidence parameters are considered as controllable factors, and experimental design techniques are utilized to analyse the influence of incidence parameters on the design objectives, if any, that may result in a robust system. The proposed framework is illustrated with the trolley design of overhead travelling crane.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3