Stability analysis of triple solutions of Casson nanofluid past on a vertical exponentially stretching/shrinking sheet

Author:

Lanjwani Hazoor Bux1,Saleem Salman2,Chandio Muhammad Saleem1,Anwar Muhammad Imran3,Abbas Nadeem4ORCID

Affiliation:

1. Department of Mathematics, University of Sindh, Jamshoro, Pakistan

2. Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia

3. Department of Mathematics, Higher Education Department, Punjab, Pakistan

4. Department of Mathematics, Riphah International University Faisalabad Campus, Faisalabad, Pakistan

Abstract

The MHD two dimensional boundary layer flow of Casson nanofluid on an exponential stretching/shrinking sheet is considered with effects of radiation parameter, nanoparticles volume fractions (i.e. Fe3O4 and Ti6Al4V) and thermal convective boundary condition. The partial differential equations are transformed into ordinary differential equations by means of similarity transformations. The solutions of the transferred equations are achieved numerically with the help of shooting technique in Maple software. At different ranges of involved physical parameters, triple solutions are found. Therefore, stability analysis is performed by bvp4c in MATLAB to find the stable and physically reliable solution. Impacts of the physical parameter are presented through graphs and tables. Mainly, it is found that an increase in Casson and suction parameters decrease the corresponding velocity profiles while increase in Prandtl number, stretching/shrinking, and suction parameter decrease the temperature profiles. Furthermore, an increase in nanoparticles volumetric fraction, radiation and magnetic parameters as well as Biot number increase the temperature profiles and their thermal boundary layer thicknesses.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3