Energy efficiency evaluation of a natural gas pipeline based on an analytic hierarchy process

Author:

Xie Ying1,Ma Xiufen1,Ning Haifeng1,Yuan Zongming1,Xie Ting1

Affiliation:

1. School of Petroleum Engineering, Southwest Petroleum University, Chengdu, China

Abstract

A long-distance natural gas pipeline system consists of considerable equipment and many pipe segments, but the conventional energy efficiency index of a natural gas pipeline is considered as a whole. Because the specific energy consumption of each unit cannot be determined, the index system is not perfect, and evaluating the energy efficiency of a natural gas pipeline system is difficult. The energy efficiency evaluation model for a natural gas pipeline was established using the analytic hierarchy process. A judgment matrix was constructed based on the energy efficiency index system of a long-distance natural gas pipeline, and the weight coefficient was calculated using the characteristic root method. Then, the consistency of the established judgment matrix was verified. The energy efficiency evaluation model successfully quantified the qualitative factors that affect natural gas pipelines. The comprehensive energy efficiency coefficient G of the natural gas pipeline was obtained from the operational data of the natural gas pipeline; then, the equipment or pipe segments with high energy consumption can be identified. The energy efficiency evaluation program of the natural gas pipeline was developed using Visual Basic for Applications, which significantly reduced the evaluation workload. The natural gas pipeline energy efficiency evaluation model is used to evaluate the energy efficiency of a natural gas pipeline, to identify the high energy consumption equipment or pipe segments, and to propose measures to improve the energy efficiency. The results show that the gas pipeline energy efficiency evaluation model and evaluation procedures can identify high energy consumption equipment or pipe sections in complex natural gas pipelines.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3