On the cutting force of micro-textured polycrystalline cubic boron nitride cutting tool for powder metallurgy materials

Author:

Yang Haidong1,Han Zhengguang1,Xia Xiquan1,Wang Qidong2,Zhang Juchen1,Chang Weijie1,Qing Zhenhua1,Tang Huohong1,Chen Shunhua1ORCID

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei, China

2. Department of Biological and Environmental Engineering, Hefei University, Hefei, China

Abstract

Micro-textured cutting tools were widely reported due to the improved cutting performance, for example, the reduction of cutting forces. However, the cutting performance is significantly dependent on the parameters of the micro-textures. In this work, some polycrystalline cubic boron nitride tools with designed circular micro-textures were designed and manufactured by laser processing technology, and used to machine powder metallurgy materials. The effect of micro-texture parameters (diameter, depth and density) on the cutting forces ( FX, FY, FZ and Fr) was studied by an orthogonal test, the effect of cutting velocity on the cutting force was also studied. The results have shown that the pit diameter and depth have more significant effect on the cutting forces than the cutting velocity and pit density. As compared with the non-textured tools, the textured tools can effectively reduce the cutting forces and the optimal cutting forces were achieved at parameters as 230 μm for diameter, 90 μm for depth, 20% for density and 110 m/min for cutting velocity. The present findings are of significance for the design of polycrystalline cubic boron nitride cutting tools and the processing of powder metallurgy materials.

Funder

fundamental research funds for the central universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3