Research on operating domain optimization of power split hybrid electric vehicle based on global bifurcation and chaos threshold

Author:

Lei Dou1ORCID,Yingfeng Cai2,Long Chen2,Dehua Shi2,Donghai Hu1,Zhen Zhu1,Jiajia Wang1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

2. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China

Abstract

The power-split hybrid electric vehicle (PS-HEV) has multiple working modes to maintain high operation efficiency according to different conditions. The main modes involved in the vehicle driving process are pure electric mode and the hybrid driving mode. Because the electromechanical coupling problem is involved in the above two working modes, the transmission system exhibits strong non-linear characteristics. If the operation range of the engine and motor are unreasonable, the rotor system will vibrate and become instability. In this paper, the non-linear dynamic equations of the electromechanical coupling of the transmission system are established for electric driving mode and hybrid driving mode. The closed-homoclinic phase trajectory equation at the center point of the disturbance-free Hamilton system is determined. The chaotic thresholds for the pure electric and hybrid driving modes are derived through the Melnikov’s method to obtain the optimal working domain of the engine and motor. Finally, numerical simulation analysis is conducted to verify the feasibility of the work domain optimization scheme. Simulation results show that the proposed engine and motor working area optimization scheme can effectively avoid the homoclinic bifurcation in the PS-HEV during the driving process and prevent the vehicle from entering the chaotic state.

Funder

national natural science foundation of china

Key Project for the Development of Strategic Emerging Industries of Jiangsu Province

six talent peaks project in jiangsu province

Natural Science Founding of Jiangsu Province

Key Research and Development Program of Zhenjiang City

national basic research program of china

major basic research project of the natural science foundation of the jiangsu higher education institutions

National Natural Science Foundation of China

natural science foundation of jiangsu province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3