Experimental and numerical analysis of the static strength and fatigue life reliability of parabolic leaf springs in heavy commercial trucks

Author:

Ceyhanli Ufuk Taner1,Bozca Mehmet2ORCID

Affiliation:

1. Research and Development Centre, Ford-Otosan A.Ş., Istanbul, Turkey

2. Machine Design Division, Mechanical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey

Abstract

The objective of this study is to perform experimental and numerical analysis of the static strength and fatigue life reliability of parabolic leaf springs in heavy commercial trucks. To achieve this objective, stress and displacements under static loading were analytically calculated. A computer-aided design model of a parabolic leaf spring was created. The stress and displacements were calculated by the finite element method. The spring was modelled and analysed using CATIA Part Design and ANSYS Workbench. The stress and displacement distributions on a three-layer parabolic leaf spring were obtained. The high-strength 51CrV4 spring steel was used as sample parabolic leaf springs material, and heat treatments and shoot peening were applied to increase the material strength. Sample parabolic leaf springs were tested to obtain stress and displacement under static loading conditions. By comparing three methods, namely, the static analytical method, static finite elements method and static experimental method, it is observed that results of three methods are close to each other and all three methods are reliable for the design stage of the leaf spring. Similarly, sample parabolic leaf springs were tested to evaluate the fatigue life under working conditions. The reliability analysis of the obtained fatigue life test value was carried out. It was shown that both analytical model and finite element analysis are reliable methods for the evaluation of static strength and fatigue life behaviour in parabolic leaf springs. In addition, it is determined by a reliability analysis based on rig test results of nine springs that the spring achieves its life cycle of 100,000 cycles with a 99% probability rate without breaking. Furthermore, the calculated fatigue life is 2.98% greater than experimentally obtained fatigue life mean and the leaf spring can be used safely and reliably during the service period in heavy trucks.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3