Pressure fluctuation and flow pattern of a mixed-flow pump with different blade tip clearances under cavitation condition

Author:

Xu Yun1,Tan Lei1,Liu Yabin1,Cao Shuliang1

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China

Abstract

Cavitation phenomenon has strong transient characteristics and is highly influenced by geometric structure. In this study, the cavitation performance with influence of blade tip clearance for a mixed-flow pump is studied using the renormalization group (RNG) k–ε turbulence model and the Zwart–Gerber–Belamri cavitation model. The dominant frequency and maximum amplitude values at non-cavitation condition and different cavitation conditions are compared and associated with flow field features. The results show that the dominant frequency value under incipient cavitation and critical cavitation is 3.2 fi and when the cavitation is severe, the frequency value changes to 3.5 fi. Then, the influence of tip clearance width on cavitation performance of the mixed-flow pump is also discussed. The results show that the increase in tip clearance will significantly aggravate the performance drop of the pump under cavitation conditions. The critical net positive suction head value increases in 4.79% of the value under no-tip clearance condition. At the same time, by the inner flow field observation and analysis, the morphological of cavitation bubbles is also changed, and the cavitation bubbles tend to attach to the blade suction side and the attachment length increases as the tip clearance increases.

Funder

the Beijing Natural Science Foundation

the Tsinghua University Initiative Scientific Research Program

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3