Underwater acoustic beacon signal extraction based on dislocation superimposed method

Author:

Zhang Zengmeng1,Cheng Xing1,Ning Dayong1,Hou Jiaoyi1,Gong Yongjun1

Affiliation:

1. College of Transportation Equipments and Ocean Engineering, Dalian Maritime University, Dalian, China

Abstract

Flight data are recorded in an acoustic beacon. A new signal extraction method led by random decrement technique is proposed to detect sound signals from thousands of meters under the sea. This method involves dislocation superimposed method and cross-correlation function to extract acoustic beacon signals with noise interference. First, the starting point is selected and the length of each segment is determined via two superposition ways. Second, the signal segment for linear superposition is intercepted to complete acoustic beacon signal extraction. Finally, the signals are subjected to cross-correlation and energy analyses to determine the accuracy of interception signals. During the experiment, the collected acoustic beacon signal is used as the test signal, and the signal is obtained as the simulation signal on the basis of the parameters of acoustic beacons. Results show that the correlation between the synthetic and concerned signals is more than 80% after a number of superposition are performed and the extraction effect is remarkable. Dislocation superimposed method is simple and easily operated, and the extracted signal waveform yields a high accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Location of Acoustic Beacon with Passive Sonar system : A Comprehensive Analysis;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

2. A Novel Feature-Based Detector for Underwater Acoustic Beacon Signals Using Superimposed Envelope Spectrum of Multi-Pulses;Journal of Marine Science and Engineering;2021-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3