Study on the application of dimensionality reduction method on reliability and reliability sensitivity analysis of random vibration systems

Author:

Li Haochuan1,Sun Zhili1,Yan Ming2,Wang Jian1,He Juan1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

2. School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China

Abstract

The application of dimensionality reduction method on the reliability and reliability sensitivity analysis of vibration systems was examined. The dimensionality of a vibration reliability problem was reduced to only two independent dimensions by the means of polar transformation. As the safe and failure classes of samples are clearly distinguishable and occupy a standard position in a two-dimensional plot in the case that the important direction exists, the relevant samples are selected visually. The reliability and reliability sensitivity problems were solved using the position of the relevant samples. Before the reliability and reliability sensitivity estimation, an essential visualization analysis is conducted to examine the capacity of the method in terms of the existence of the important direction which is used to reduce the dimensionality of the reliability problem. In order to calculate the design point correctly, the improved Hasofer–Lind–Rackwitz–Fiessler method was extended with a procedure for determining the perturbation in the calculation of the gradient vector by finite differences according to the numerical precision of the limit state function. The dimensionality reduction method saves the numbers of calling limit state function a lot and has the same accuracy as Monte Carlo method. Examples involving single and multiple degree-of-freedom nonlinear vibration systems were used to demonstrate the approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3