Optimal design for outer rings of self-lubricating spherical plain bearings based on virtual orthogonal experiments

Author:

Gong Lingzhu1,Yang Xiaoxiang23,Kong Kaibin2,Zhong Shuncong2ORCID

Affiliation:

1. School of Chemical Engineering, Fuzhou University, Fuzhou, P.R. China

2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, P.R. China

3. Quanzhou Normal University, Quanzhou, China

Abstract

To improve the product quality of self-lubricating spherical plain bearing, a new shape of the outer rings for spherical plain bearings was optimally designed based on virtual orthogonal experiments using finite element software ABAQUS. The depth inclined end wall, together with the length of annular wall, the depth of annular concavity, the outer ring thickness, and the edge radius were taken as the main structural parameters in the analysis. For the evaluation parameters, the maximum bearing clearance, the maximum contact pressure, the maximum extrusion load, and the maximum equivalent plastic strain were considered. The optimal structure parameter combination was identified based on the intuitive comprehensive balance analysis method. The simulation results demonstrated much improvement for the forming quality by using a new type of the outer ring, which was optimized by the virtual orthogonal experiments. The new type of the outer ring could be used to the forming process in assembling the spherical plain bearings.

Funder

Fujian Provincial Excellent Young Scientist Fund

Fujian Provincial Science and Technology Major Project

Fujian Provincial Quality and Technical Supervision Bureau Project

Fujian Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference17 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3