Affiliation:
1. Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
Abstract
The objective of this article is to investigate the impact of pseudoplaticity and dilatancy of fluid on peristaltic flow and heat transfer of non-Newtonian fluid in a non-uniform asymmetric channel. The mathematical-model incorporates the non-linear implicit stress deformation relation using the classical Reiner-Philippoff viscosity model, which is one of the very few non-Newtonian models exhibiting all the pseudoplastic, dilatant and Newtonian behaviors. The governing equations for the peristaltic flow and heat transfer of Reiner-Philippoff fluid are modeled using the low Reynolds-number and long wavelength approximation. Results of the study are presented graphically to discuss the impact of pseudoplaticity and dilatancy of fluid on the velocity, pressure gradient, bolus movement and temperature profile. The article is concluded with key observations that by increasing the value of the Reiner-Philippoff fluid parameter the velocity of fluid increase at the center of the channel and decreases near the boundaries of the channel. Effects of the shear stress parameter are opposite on pseudoplastic and dilatants fluid. By increasing the value of the shear stress parameter the velocity of the pseudoplastic fluid increases near the center of the channel, whereas the velocity of dilatants fluid decreases.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献