A mine main fans switchover system with lower air flow volatility based on improved particle swarm optimization algorithm

Author:

Ge Hengqing12ORCID,Xu Guang3,Huang Jinxin3ORCID,Ma Xiaoping2

Affiliation:

1. School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai’an, China

2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China

3. Department of Mining Engineering and Metallurgical Engineering, Western Australian School of Mines, Curtin University, Kalgoorlie, WA, Australia

Abstract

A reliable ventilation system is essential for maintaining a comfortable working environment and ensuring safety production in an underground coal mine. The automated fan switchover technique was developed for changing the main fan for maintenance with lower air flow volatility of underground mine in the switchover process. This article established the optimization model in the main fans switchover process, used the improved particle swarm optimization algorithm to solve the model, and achieved minimum air flow volatility in the fans switchover process. Compared to previous studies, computer simulations have shown that the proposed algorithm can effectively find the global optimal solution with less initial parameters and achieved lower air flow volatility in underground mine. The particle swarm optimization solution, searching diversity, prevents it from confining to local optimal solutions and enhances convergence. The reasonable step length is beneficial to reduce the air flow volatility and main fans switchover time. The air flow volatility is larger comparatively when some doors are nearly open or closed fully at the start–stop phase of the switchover process. A case application in a China’s domestic coal mine shows that the air flow volatility of the underground mine in the main fans switchover process is no more than 0.4%.

Funder

Industry-university-research prospective joint research project

state key laboratory of coal resources and safe mining

Key research and development plan of Jiangsu Province: Key technology research and development of mine ventilation safety and energy saving measurement and control

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3