Affiliation:
1. Department of Mechanical Engineering, Faculty of Engineering, National Defense University of Malaysia (NDUM), Kuala Lumpur, Malaysia
Abstract
This article presents an active safety system for a wheeled armored vehicle to encounter the effect of the firing force. The firing force which acts as an external disturbance causes unwanted yaw moment occurred at the center of gravity of the wheeled armored vehicle. This effect causes the wheeled armored vehicle lose its handling stability and the traveling path after the firing condition. In order to overcome the stability problem, a Firing-On-the-Move assisted by an Active Front Wheel Steering system is proposed in this study. This system is developed based on two established systems, namely, Firing-On-the-Move and Active Front Wheel Steering systems. The proposed system is designed to improve the handling and directional stability performances of the armored vehicle while fires in dynamic condition. Four types of control strategies are designed and investigated in this study to identify the most optimum control strategy as the Firing-On-the-Move assisted by an Active Front Wheel Steering system using optimization tool, genetic algorithm. The control strategies for the Firing-On-the-Move assisted by an Active Front Wheel Steering are evaluated using various types of vehicle speeds and firing angle in order to obtain an appropriate control structure as the Firing-On-the-Move assisted by an Active Front Wheel Steering system for the wheeled armored vehicle.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献