Gas face seal status estimation based on acoustic emission monitoring and support vector machine regression

Author:

Yin Yuan1,Liu Xiangfeng1,Huang Weifeng1ORCID,Liu Ying1,Hu Songtao2

Affiliation:

1. State Key Laboratory of Tribology, Tsinghua University, Beijing, China

2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China

Abstract

The difficulty of knowing the real-time status of gas face seals is the main cause of common problems, including sudden failure, ineffective diagnosis, and unpredictability of service life. This study analyzed the acoustic emission signals generated from experiments, uncovering their features in terms of the frequency distribution, periodic fluctuations, and the behaviors during different operation phases. A new vectorization procedure was designed according to the knowledge of informative acoustic emission features. Based on the vectorization procedure, a support vector machine regression method was applied to develop models predicting the eccentric load on the stator of the seal. Cross-validation was conducted to evaluate the regression performance and search for a proper kernel scale. This study found the informative features of acoustic emissions at different timescales and during different seal operation phases, and particularly the great informative potential of certain segments of the starting and stopping phases. The vectorization and support vector machine regression were shown to be effective in estimating the loads in experiments with cross-validation. Thus, a method for estimating the status of gas face seals based on acoustic emission monitoring was established.

Funder

national basic research program of china

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3