Dynamic parameters’ identification for the feeding system of computer numerical control machine tools stimulated by G-code

Author:

Chen Guangsheng1,Zhu Shuai1,Zheng Qingzhen1

Affiliation:

1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China

Abstract

This study proposed a dynamic parameters’ identification method for the feeding system of computer numerical control machine tools based on internal sensor. A simplified control model and linear identification model of the feeding system were established, in which the input and output signals are from sensors embedded in computer numerical control machine tools, and the dynamic parameters of the feeding system, including the equivalent inertia, equivalent damping, worktable damping, and the overall stiffness of the mechanical system, were solved by the least square method. Using the high-order Taylor expansion, the nonlinear Stribeck friction model was linearized and the parameters of the Stribeck friction model were obtained by the same way. To verify the validity and effectiveness of the identification method, identification experiments, circular motion testing, and simulations were conducted. The results obtained were stable and suggested that inertia and damping identification experiments converged fast. Stiffness identification experiments showed some deviation from simulation due to the influences of geometric error and nonlinear of stiffness. However, the identification results were still of reference significance and the method is convenient, effective, and suited for industrial condition.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3