Experimental and finite element evaluations of debonding in composite sandwich structure with core thickness variations

Author:

Saeid Ali A1,Donaldson Steven L2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, School of Engineering, University of Dayton, Dayton, OH, USA

2. Department of Civil & Environmental Engineering & Engineering Mechanics, School of Engineering, University of Dayton, Dayton, OH, USA

Abstract

An important failure mode in sandwich structures is the debonding between the core and facesheet, which can destroy the load capacity of the structure. This work addressed the critical interfacial modes and studied the effects of thickness variation of the core material. The single cantilever beam geometry is utilized for conducting experiments after optimizing the thicknesses of the core and facesheet by minimizing the difference in the bending stiffness matrix between the upper facesheet and the lower facesheet/core combination. Two different core material thicknesses were tested. The experimental results showed that the critical energy release rate could be influenced by core thickness variations. Furthermore, the cohesive zone method and elastic–plastic core material model in conjunction with fracture criteria were used to model the entire structure failure response. The validation results predicted load–extension curves in agreement with actual tests for both single cantilever beam geometry specimens. The model also had the ability to predict the crack initiation in the core materials which occurred under the interface zone as in the actual test. In addition, the mixed-mode ratios through the interface area were analyzed as function of crack length to assess its influence on both single cantilever beam thickness specimens.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3