Numerical analysis on the performance characteristics of a new gas journal bearing by using finite difference method

Author:

Li Yuntang1ORCID,Li Ruirui1ORCID,Ye Yueliang1,Li Xiaolu1,Chen Yuan1

Affiliation:

1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China

Abstract

This paper proposes a novel gas journal bearing in which orifices are different in diameter and distribute unevenly. Finite Difference Method (FDM) combined with Linear Perturbation Method (LPM) is used to solve the unsteady-state Reynolds equation of the flow field in the bearing clearance. Moreover, four types of bearing structures are used to discuss the effects of orifices different in diameter and uneven distribution on the bearing performance. The results demonstrate that the new bearing has better static and dynamic performances compared with those of traditional bearing in which orifices are equal in diameter and distribute evenly. Moreover, thin gas film thickness, high supply pressure, and large eccentricity ratio are hopeful for improving load capacity of the new bearing. Furthermore, the stability of the novel bearing is improved if eccentricity ratio is 0.25–0.3.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3