Flexible dynamic analysis of an offshore wind turbine installed on a floating spar platform

Author:

Zhu Xiangqian1,Yoo Wan-Suk1

Affiliation:

1. Department of Mechanical Engineering, Pusan National University, Busan, South Korea

Abstract

Flexible dynamic analysis is a critical process in designing offshore wind turbines that are composed of several huge components. This process was implemented with a hybrid method of finite element multibody system using commercial software in this article. Based on this method, the tower and blades were modeled as flexible components using three-dimensional solid elements. The effect of flexible deformation of the tower and blades on the global motions of the floating wind turbine was investigated by comparing the simulation results from the flexible body modeling with those from the rigid body modeling. The tower, blades, and spar platform were divided into sections according to the geometry configuration of the 5-MW OC3-Hywind floating wind turbine. The time- and position-dependent loads, coming from the wind, wave, and mooring system, were expressed approximately with respect to the divided sections. The relationships between the global motions and the external loads were studied, which indicated that the wind loads had dominant influences on the translational motions and the rotational motions were mainly generated by the propagating waves.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3