Improvement on sound transmission loss through a double-plate structure by connected with a mass–spring–damper system

Author:

Mao Qibo1,Shen Hui1

Affiliation:

1. School of Mechanical Engineering, Yangzhou University, Yangzhou, P.R. China

Abstract

It is well-known that the acoustic performance of double-plate structures deteriorates rapidly around the mass–air–mass resonance frequency. In this study, a mass–spring–damper system connected between incident and radiating plates is used to improve the sound transmission loss at low-frequency ranges. First, a full structural-acoustic modal coupling model is developed to analyze the vibration and acoustical behaviour of the double-plate structures with mass–spring–damper system. Because there are in-phase or out-of-phase vibrations between double plates, tuning the natural frequency of the mass–spring–damper system exactly to the mass–air–mass resonance frequency cannot guarantee the maximum improvement on transmission loss. Optimal natural frequency and mass of the mass–spring–damper system were found as a solution of optimization problem with a global cost function defined as frequency-averaged sound transmission loss in the desired frequency range (around mass–air–mass resonance frequency). Finally, some numerical calculation results are presented. The calculated results show that the sound transmission loss of a double-plate structure can be improved significantly using optimally tuned mass–spring–damper system. The results indicate that an overall improvement of 12 dB below 1000 Hz can be achieved when the mass of the mass–spring–damper system equals to 10% weight of the double-plate structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3